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Abstract: In medical practice, chest X-rays are the most ubiquitous diagnostic imaging tests. However,
the current workload in extensive health care facilities and lack of well-trained radiologists is a signif-
icant challenge in the patient care pathway. Therefore, an accurate, reliable, and fast computer-aided
diagnosis (CAD) system capable of detecting abnormalities in chest X-rays is crucial in improving
the radiological workflow. In this prospective multicenter quality-improvement study, we have
evaluated whether artificial intelligence (AI) can be used as a chest X-ray screening tool in real clinical
settings. Methods: A team of radiologists used the AI-based chest X-ray screening tool (qXR) as a
part of their daily reporting routine to report consecutive chest X-rays for this prospective multicentre
study. This study took place in a large radiology network in India between June 2021 and March
2022. Results: A total of 65,604 chest X-rays were processed during the study period. The overall
performance of AI achieved in detecting normal and abnormal chest X-rays was good. The high
negatively predicted value (NPV) of 98.9% was achieved. The AI performance in terms of area under
the curve (AUC), NPV for the corresponding subabnormalities obtained were blunted CP angle
(0.97, 99.5%), hilar dysmorphism (0.86, 99.9%), cardiomegaly (0.96, 99.7%), reticulonodular pattern
(0.91, 99.9%), rib fracture (0.98, 99.9%), scoliosis (0.98, 99.9%), atelectasis (0.96, 99.9%), calcification
(0.96, 99.7%), consolidation (0.95, 99.6%), emphysema (0.96, 99.9%), fibrosis (0.95, 99.7%), nodule
(0.91, 99.8%), opacity (0.92, 99.2%), pleural effusion (0.97, 99.7%), and pneumothorax (0.99, 99.9%).
Additionally, the turnaround time (TAT) decreased by about 40.63% from pre-qXR period to post-qXR
period. Conclusions: The AI-based chest X-ray solution (qXR) screened chest X-rays and assisted
in ruling out normal patients with high confidence, thus allowing the radiologists to focus more on
assessing pathology on abnormal chest X-rays and treatment pathways.

Keywords: chest X-rays; deep learning; qXR; computer aided diagnostic; neural network; multicenter
prospective study

1. Introduction

Chest radiography (chest X-ray or CXR) is the most common, economic, and low-
radiation imaging modality, with a yearly estimate of over 2 billion imagings performed
worldwide [1,2]. CXR serves as a primary and crucial screening modality in the diagnosis
and management of cardiothoracic and pulmonary abnormalities, such as pneumothorax,
pleural effusion, atelectasis, cardiac hypertrophy, hyperinflation, and consolidation, etc. [3].
CXR plays an important role in the diagnostic domain of medical practice. However,
correctly identifying the abnormalities on CXR is often a significant challenge due to the
limited number of well-trained radiologists and the heavy workload in extensive healthcare
facilities [4]. Additionally, interpretations of CXR are subjective in nature. The complexity
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of accurate CXR interpretation is largely increased by the presence of overlapping tissue
structures. For example, when the lesion overlaps the ribs or large pulmonary blood
arteries, or when there is minimal contrast between the lesion and the surrounding tissue,
clear identification of the condition might be very difficult [5]. Sometimes, well-trained
radiologists find it challenging to differentiate between the lesions or correctly identify
very obscure pulmonary nodules [6]. Therefore, the chances of misdiagnosing lung abnor-
malities in CXR are high. To overcome these challenges, an automated system that can
identify abnormalities on CXR with high accuracy and reliability is required. The auto-
mated CXR screening tool will aid in decreasing the workload and reducing the potentially
missed findings in CXR. Recently, WHO also recommended using AI-based triaging as a
potential solution in diagnostic pathways for tuberculosis [7]. The recent advancement
of deep learning in various fields, such as computer vision, speech recognition, natural
language processing, and bioinformatics, has been promising [8]. However, in contrast to
deep learning, which is based on an automated feature learning process, machine learning
relies on handcrafted, feature-based engineering that becomes vulnerable when applied to
distinct patient groups and varying image qualities. Deep convolutional neural networks
(CNNs) have proven to be more powerful in learning hierarchically rich deep features from
labelled images. CNN performs a series of convolutional and non-linear operations by
optimizing certain loss functions and mapping to the ground-truth labels to bridge the gap
between high- and low-level visual feature representations [9].

In recent years, automated CXR screening using CAD systems based on CNNs for
the detection of thoracic abnormalities has been an active area of research [10,11]. The
CNN-based CAD system is generally trained on a large-scale database of labelled images.
This helps in improving the learning of underlying complex semantic features for superior
generalization in disease detection. Prior work based on large-scale open-source CXR
datasets such as “NIH ChestX-ray 14”, “ChestXpert”, and “MIMIC-CXR” has been con-
ducted by using the CAD system to detect different lung abnormalities i.e., pleural effusion,
cardiomegaly, tuberculosis, lung cancer, pulmonary edema, pneumothorax, and pneumo-
nia [12–17]. However, in most earlier studies, triaging AI for detecting chest abnormalities
from open-source CXR was designed as a retrospective study. In this, ground truth was
established based on the already available labelled images or based on the opinion of the
minimum number of radiologists. Generally, in such a retrospective setting, the inclusion
of CXR is based on a particular disease of interest and a specified number of patients with
and without the condition. As a result, the true disease status of the patient at the time of
study is generally not known. However, in a prospective design, a patient sample is better
characterized in terms of clinical characteristics, standardized techniques for carrying out
and interpreting the test(s) and establishing the gold standard process [18]. Moreover, in
terms of hierarchy in the importance of evidence, prospective study designs are ranked
higher than retrospective study designs as the level of evidence is of higher relevance [19].

The commercially available deep learning-based AI algorithm qXR (Qure.ai Technolo-
gies, Mumbai, India) [20] has been used in multiple studies previously in CXR screening for
diagnosis of tuberculosis [21], missed or mislabelled findings [22], severity assessment of
pneumonia with the need for mechanical ventilation [23], and identification of malignant
nodules [24]. We conducted a prospective multicentre quality-improvement study. The
study aimed to evaluate the quality of CXR analysis software (qXR) for predicting normal
and abnormal CXR in routine screening. The study compared the performance of qXR with
the radiologist in triaging and interpreting CXR in a high-CXR volume facility. The qXR
also provided an AI-generated report detailing the abnormalities and localization of the ab-
normality present on the CXR, which assisted the frontline radiologists in patient diagnosis
and reduced interreader variability across the readers. To the best of our knowledge, there
is no prior publication on triaging AI in routine clinical practice for normal and abnormal
reporting from CXR in a multi-centers prospective design.
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2. Materials and Methods

The CXR and their corresponding radiological reports were obtained prospectively
from the 35 centres of large radiology network in India from June 2021 to March 2022. A
total of 10 radiologists with varying levels of experience read the CXR. The inclusion criteria
of the study included CXR of patients with posterior–anterior (PA) or anterior–posterior
(AP) views, image resolution of 1440× 1440 pixels, and de-identified DICOMs(.dcm) format
and more than six years of age. Patients were included in the final analysis if the CXR meet
the inclusion criteria. The exclusion criteria included lateral view of the chest, incomplete
view of lung, incomplete metadata, non-chest radiographs, and CXR with postoperative
defects and excessive motion artifacts. Technical integration was tested prior to the start
of the study to establish a connection between the picture archiving and communication
system (PACS) and CAD software. This ensured that CXRs are auto-pushed from PACS.
qXR was set up and installed on the radiologists’ workstations after a successful testing
phase. qXR is compatible and can integrate with any PACS system to maintain the data
integrity without the substantial change in existing workflow. In this study, qXR classified
CXR into three category settings—normal, abnormal, and to be reviewed (TBR)—as the
aim was to filter the normal scans with high confidence. In Figure 1, the process followed
at different study sites is given.

Figure 1. Flow diagram illustrating qXR assisted reporting process followed during this study across
different study sites.

The qXR processed all 65,604 CXR and categorised them as normal, abnormal, or TBR
by the radiologist. TBR are those cases wherein qXR flagged CXR for escalated radiologist’s
review. A total of 16,664 CXR were categorized as TBR. A total of 48,940 CXR were either
classified as normal (qXR predicted no significant abnormality) and abnormal when qXR
predicted significant abnormality. These cases were used for final analysis to determine
the performance of the qXR. In Figure 2 a detailed semantic diagram on the final study
population is given. The natural language processing (NLP) was implemented to parse
the radiological report. The normal CXR comprised of no detectable abnormalities in the
airways, lung fields, cardiac region, mediastinum, pleura, and visible thoracic skeleton
and diaphragm. CXR which were not normal were categorized as abnormal. The major
abnormalities which were clubbed in the abnormal category included blunted costo phrenic
angle, hilar dysmorphism, cardiomegaly, reticulonodular pattern, rib fracture, scoliosis,
atelectasis, calcification, consolidation, emphysema, fibrosis, nodule, opacity, pleural effu-
sion, and pneumothorax. All the radiologists reading the CXR across multiple radiological
centres had access to automated qXR diagnostic report on reader’s computers. The radiol-
ogist’s reports were finally used as a reference criterion to compare qXR performance in
classifying normal and abnormal CXR by using standard evaluation metrics.
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Figure 2. A consort diagram determining the exclusion criteria and establishing the final study
population.

Statistical Analysis

Statistical analyses were performed by using Python version 3.9.7, Programming Lan-
guage. The performance of qXR in categorizing normal and abnormal CXR was evaluated
by using standard evaluation metrics, i.e., sensitivity, specificity, negative predictive value
(NPV), and area under the ROC curve (AUC). These 95% confidence intervals for all perfor-
mance evaluating metrics have been estimated by using the Wilson score method [25,26]
without continuity correction.

3. Results

The final study population resulted in 65,604 CXR from 35 study centers in six different
states of India after excluding 893 CXR as per exclusion criteria. Among the 16,664 TBR
cases, 15,019 (90.13%) were marked as normal and 1645 (9.87%) were abnormal by the
radiologists. To reduce potential bias in assessing the performance of the qXR, the final
analysis is based upon 48,940 CXR after excluding all the TBR cases. The median age of
the study population was 42 years. The mean, standard deviation, and interquartile range
of patient age were 43.36 and 16.32, and 24. There were 61.7% male and 38.3% female
patients included in the study. The automated qXR successfully sent all the processed CXR
results to the PACS for easy visualization of outputs for the radiologists. The qXR achieved
an overall mean sensitivity and specificity of 87.9% and 82.9%, respectively, in predicting
normal and abnormal CXR. The high mean NPV of 98.9% suggests the efficacy of qXR
in ruling out normal patients, thus allowing the radiologists to focus more on assessing
pathology on abnormal CXR and treatment pathways. In Table 1, the detailed performance
of qXR in categorizing normal and abnormal CXR is given.

Table 1. Performance of qXR in categorizing normal or abnormal CXR using radiologist as reference
standard. negative predictive value (NPV); confidence interval (CI).

Evaluation Metrics Point Estimate (95% CI)

Sensitivity 0.879 (0.867–0.889)
Specificity 0.829 (0.825–0.832)

NPV 0.989 (0.981–0.990)
AUC 0.871 (0.866–0.877)

The robustness of the qXR is further analyzed by stratified performance comparison
in terms of NPV, sensitivity, specificity, and AUC across three different manufacturers, age
in three different subgroups (16 years and less, 16 to 45 years, and more than 45 years of
age), and gender is given in Table 2. It is observed from Table 2 that the NPV for different
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manufacturers obtained by qXR in categorizing normal or abnormal is 98.8%, 98.7%, and
99.1%. From three different age groups, the values are 99.5%, 99.3% and 98.1%. From
gender, the values are male, 99% and female, 98.7%. The stratified analysis conveys the
high-performance stability of qXR across subgroups and usability in ruling out normal in
routine CXR screening. In Figure 3 the ROC curves for qXR overall performance, stratified
by manufacturer and patient’s demographic is also given.

Table 2. Performance of qXR in categorizing normal or abnormal CXR stratified by patient’s demo-
graphic and manufacturer using radiologist as reference standard. Negative predictive value (NPV);
Area under the curve (AUC).

Attributes NPV Sensitivity Specificity AUC

Manufacturer

Carestream Health 0.988 (0.987–0.990) 0.878(0.862–0.892) 0.831 (0.826–0.836) 0.872 (0.862–0.883)

AGFA 0.987 (0.985–0.989) 0.865 (0.840–0.887) 0.836 (0.829–0.843) 0.878 (0.862–0.893)

Fujifilm 0.991 (0.989–0.993) 0.894 (0.870–0.914) 0.817 (0.810–0.824) 0.868 (0.851–0.884)

Age (years)

16 and less 0.995(0.988–0.997) 0.901 (0.790–0.957) 0.819 (0.797–0.840) 0.886 (0.826–0.946)

16–45 0.993 (0.992–0.994) 0.792 (0.763–0.819) 0.922 (0.919–0.925) 0.878 (0.862–0.893)

45 and above 0.981 (0.978–0.983) 0.905 (0.893–0.916) 0.694 (0.688–0.701) 0.809 (0.798–0.819)

Gender
Male 0.990 (0.989–0.991) 0.884 (0.869–0.897) 0.833 (0.829–0.838) 0.875 (0.865–0.885)

Female 0.987 (0.985–0.989) 0.871 (0.853–0.888) 0.821 (0.815–0.826) 0.866 (0.854–0.878)

BOLD denotes best performance in the stratified category for the different metrics.

Figure 3. ROC curve. (a) Overall qXR performance. (b) Stratified across three different manufacturer
subgroups. (c) Stratified across gender. (d) Stratified across 3 different age subgroups.

The CXR categorized as abnormal are further classified into two main categories and
15 major subabnormalities. The remarkable performance of qXR in terms of NPV for differ-
ent abnormalities i.e., blunted CP angle (99.5%), hilar dysmorphism (99.9%), cardiomegaly
(99.7%), reticulonodular pattern (99.9%), rib fracture (99.9%), scoliosis (99.9%), atelectasis
(99.9%), calcification (99.7%), consolidation (99.6%), emphysema (99.9%), fibrosis (99.7%),
nodule (99.8%), opacity (99.2%), pleural effusion (99.7%), and pneumothorax (99.9%) can be
observed from Table 3. Furthermore, the capability of qXR in distinguishing the presence
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or absence of specific abnormalities like cardiomegaly, nodule, and pneumothorax in terms
of AUC is 0.965, 0.915, and 0.999 can be observed from Table 3. The ROC curve qXR
performance in identifying subabnormality from abnormal CXR is given in Figures 4 and 5.

Table 3. Performance of qXR in categorizing abnormal CXR into subabnormalities by using radiologist
as reference standard. Negative predictive value (NPV). Area under the curve (AUC).

Abonrmality NPV Sensitivity Specificity AUC

Blunted CP angle 0.995 (0.995–0.996) 0.484 (0.435–0.534) 0.990 (0.989–0.991) 0.973 (0.709–0.766)

Hilar
Dysmorphism 0.999 (0.999–0.999) 0.216 (0.113–0.371) 0.992 (0.991–0.993) 0.864 (0.789–0.939)

Extra Pulmonary
Cardiomegaly 0.997 (0.997–0.997) 0.804 (0.770–0.835) 0.962 (0.960–0.964) 0.965 (0.955–0.975)

Reticulonodular
Pattern 0.999 (0.998–0.999) 0.511 (0.407–0.614) 0.983 (0.981–0.984) 0.913 (0.872–0.954)

Rib Fracture 0.999 (0.999–0.999) 0.840 (0.653–0.935) 0.991 (0.991–0.992) 0.984 (0.951–1.000)

Scoliosis 0.999 (0.999–0.999) 0.698 (0.593–0.786) 0.995 (0.995–0.996) 0.981 (0.961–1.000)

Atelectasis 0.999 (0.998–0.999) 0.607
(0.5108–0.697) 0.982 (0.980–0.983) 0.962 (0.936–0.987)

Calcification 0.997 (0.997–0.997) 0.804 (0.770–0.835) 0.962(0.960–0.964) 0.965 (0.955–0.975)

Consolidation 0.996 (0.995–0.996) 0.702 (0.663–0.737) 0.967 (0.966–0.969) 0.956 (0.944–0.967)

Emphysema 0.999 (0.999–0.999) 0.580 (0.442–0.706) 0.988 (0.987–0.989) 0.960 (0.922–0.998)
Pulmonary Fibrosis 0.997 (0.996–0.997) 0.650 (0.598–0.698) 0.977 (0.976–0.978) 0.955 (0.940–0.970)

Nodule 0.998 (0.997–0.998) 0.719 (0.667–0.766) 0.955 (0.953–0.956) 0.915 (0.894–0.936)

Opacity 0.992 (0.991–0.993) 0.828 (0.811–0.844) 0.921 (0.919–0.924) 0.925 (0.917–0.933)

Pleural Effusion 0.997 (0.996–0.997) 0.667 (0.619–0.712) 0.986 (0.985–0.987) 0.972 (0.961–0.984)

Pneumothorax 0.999 (0.999–0.999) 0.857 (0.486–0.974) 0.998 (0.998–0.998) 0.999 (0.983–1.000)

Figure 4. ROC curve qXR performance in identifying subabnormality from abnormal CXR and
categorizing into extra pulmonary.
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Figure 5. ROC curve qXR performance in identifying subabnormality from abnormal CXR and
categorizing into pulmonary conditions.

There were total of 410 CXRs which qXR predicted as normal but were marked as
abnormal by the radiologist. Representative CXR processed by the qXR, predicted as
normal and abnormal along with abnormality localization is represented in Figure 6.

Figure 6. The CXR classified by qXR as (a) true positive (TP), (b) true negative (TN), (c) false positive
(FP), and (d) false negative (FN). (a) Predicted as abnormal with impression of cavity, pleural effusion,
pneumothorax, opacity, consolidation and fibrosis in the left lung while cavity and opacity were also
predicted in the right lung. (b) Predicted as normal. (c) Predicted as abnormal with pleural effusion,
pneumothorax and opacity in the left lung and right lung. (d) Predicted as normal.

Turnaround-Time Analysis

The baseline i.e., pre-qXR data was procured from the radiological scan centres during
a three-month period. After the qXR was deployed i.e., post-qXR, we obtained the data
randomly from the 48,940 CXR that was considered in final analyis for comparing difference
in radiology turnaround time (TAT) between the two periods. TAT as the difference between
time at which the final CXR report was reported by the radiologist and the time at which the
CXR was assigned to the radiologist. The unpaired t-test is used to compute the statisctial
signficance of the change in TAT for pre-qXR and post-qXR [27].

There were a total of 18,496 CXRs (9248 (50%) pre-qXR, and 9248 (50%) post-qXR
deployment) considered for this analysis. The mean TAT decreased by about 40.63% (83.028
min in the pre-qXR period and 50.287 min in the post-qXR period). This reduction was
significant based on the unpaired t-test (p-value < 0.0000001). The summary statistics of
TAT between the groups are given in the Table 4.
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Table 4. Summary statistics of TAT analysis between pre-qXR and post-qXR.

Attributes Pre-qXR (minutes) Post-qXR (minutes)

Minimum 11.547 6.249

Mean 83.028 50.287

Maximum 24,918.617 14,290.85
BOLD denotes least time in minutes.

4. Discussion

In this prospective multicenter quality-improvement study, we have analyzed CXR
with the help of a commercially available deep learning-based AI algorithm (qXR). The
purpose was to identify normal and abnormal findings and to demonstrate the efficacy of
triaging AI in routine CXR screening. The high NPV (98.9%) in categorizing normal and ab-
normal CXR demonstrates the utility of qXR as a screening tool in high-volume facilities. In
a prior study, deep learning algorithms were used for interpreting 420 CXRs interpretation
from a publicly available database. The reported sensitivity for atelectasis, cardiomegaly,
edema, and pleural effusion was 0.750, 0.617, 0.712, and 0.806, respectively [28]. In another
study using three AI algorithms for CXR interpretations, 13 abnormalities were reported
with a mean AUC for DenseNet121, InceptionResNetV2, ResNet152V2 was 0.793, 0.801,
and 0.751, respectively [29]. Prior studies have reported the use of AI as a standalone or
a second reader [30] with comparable performance, but validation of such tools in real
clinical settings is still missing and represents an active area of research.

Most AI models suffer from poor generalization due to target domain divergence.
Previously, the qXR has been evaluated retrospectively in more than 2.3 million CXR, where
it categorized CXR into normal and different abnormalities [20]. To determine whether
an AI algorithm can be utilized in real clinical settings, a validation of its performance
in the real world is required. The added advantage of our study from previously pub-
lished literature [20,31–33] is that the AI (qXR) has been evaluated prospectively in clinical
settings. The algorithm showed high efficacy in classifying CXR into clinically relevant ab-
normalities, demonstrating its usability in real-time routine CXR screening in large clinical
facilities. The overall sensitivity and specificity obtained is 87.9% and 82.9%, respectively.
In general clinical practice, CXR serves as a preliminary screening examination for different
thoracic and pulmonary abnormalities, where the sensitivity metric is more important,
especially in high volume and low-resource facilities. Additionally, the minimum number
of false negatives of 0.83% demonstrates its potential as a computer-aided diagnosis tool
in emergency departments to improve CXR interpretations. Among the different types of
abnormalities, the NPV obtained was 99.9% in almost all abnormalities. Additionally, the
high AUC score obtained for different abnormalities shows the capability of the qXR in
separating and categorizing different abnormalities. However, among all the abnormalities,
the hilar dysmorphism, and reticulonodular pattern achieved a least AUC score of 0.864,
0.913 respectively. This may be attributed to the limited number of true positive samples,
i.e., 37, for hilar dysmorphism, and 86 for reticulonodular pattern. In the subgroup analy-
sis, the qXR showed consistent performance in terms of NPV for different subgroups in
manufacturer, age, and sex, demonstrating the AI algorithm’s robustness.

In the conventional clinical approach, there is minimal use of technology. However,
there are many advantages to using AI in radiology departments. With the usage of AI,
the delivery of healthcare services to the patient can become more efficient and timely. AI
can reduce wait times for patients to get the final report, especially for normal cases, as
we have demonstrated in this study. In a conventional system, the normal and abnormal
CXR are in the same worklist, and there is no way to segregate/triage normal CXR without
opening the CXR. AI as a secondary reader assists in reducing errors in the reports and
missed diagnoses [22]. Beyond reduction in reporting time and improvement in report
quality, the use of AI will lead to more appropriate treatments for the patients in a timely
manner. This is also expected to be reflected in better clinical outcomes downstream in
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care management. Adoption of AI in radiology can improve quality metrics and volume
of reports significantly over time. This will benefit the radiologists, different department
levels of the healthcare facilities, and also the end-to-end patient care.

Although there are many advantages to using technology, some costs/efforts are
associated with introducing any innovation. Every innovation has upfront costs, and the
benefits are realized over time. Therefore, some physicians and departments might want to
wait before they choose to spend to adopt this innovation [34]. Overall, the advantages are
much longer than of inconveniences; this study also demonstrates robust evidence to make
a case for quicker adoption of AI in radiology. AI not only adds to the efficiency for the
clinicians, but a faster adoption is ethical so that the benefits of innovation are passed on to
the patients who can benefit from precise, timely, and better care.

There were certain limitations in our study. First, our study was based on a single
demographic and racial category; thus, whether the performance of the qXR is reproducible
in another demographic and racial category needs to be validated. Secondly, the number of
true positives samples was only 6.9% of the final study population. A larger number of true
positives would provide more exhaustive testing and further analysis of the qXR. Finally,
we want to improve the qXR algorithm and fine tune the threshold to increase the normal
CXR prediction, which is truly normal and thus decrease the radiologist’s workload further.
In the future, it would be beneficial for us to conduct a study with a larger sample and
more findings. Another helpful step would be further developing qXR at larger hospitals
in emergency settings to measure its performance and compare the TAT in reducing the
radiologist’s workload.

5. Conclusions

This study has prospectively demonstrated that using AI as an assistance tool can be
beneficial in high-workload healthcare facilities. In this multicenter prospective study, the
high NPV obtained for overall and multiple abnormalities indicates the use of AI in finding
and localizing the abnormalities on CXR. The remarkable AUC score obtained for different
clinically relevant abnormalities shows the capability of the AI tool in categorizing the CXR
with multiple abnormalities. The triaging of AI in routine CXR screening becomes more
critical for developing and underdeveloped countries with a shortage of skilled radiologists.
AI tools with high NPV like qXR can be utilized for screening purposes to screen out normal
patients, thus allowing clinicians to focus more on patients with abnormalities and their
treatment pathways. Additionally, the AI as a second reader enables radiologists to decide
rapidly with higher confidence and thus reduce the interrater variability and workload in
high CXR volume facilities.
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